STATISTICAL MECHANICS ON A COMPACT SET WITH Z' ACTION SATISFYING EXPANSIVENESS AND SPECIFICATION

BY DAVID RUELLE

ABSTRACT. We consider a compact set Ω with a homeomorphism (or more generally a Z' action) such that expansiveness and Bowen's specification condition hold. The entropy is a function on invariant probability measures. The pressure (a concept borrowed from statistical mechanics) is defined as function on $\mathcal{C}(\Omega)$ —the real continuous functions on Ω . The entropy and pressure are shown to be dual in a certain sense, and this duality is investigated.

0. Introduction. Invariant measures for an Anosov diffeomorphism have been studied by Sinai [16], [17]. More generally, Bowen [2], [3] has considered invariant measures on basic sets for an Axiom A diffeomorphism. The problems encountered are strongly reminiscent of those of statistical mechanics (for a classical lattice system—see [14, Chapter 7]). In fact Sinai [18] has explicitly used techniques of statistical mechanics to show that an Anosov diffeomorphism does not in general have a smooth invariant measure.

In this paper, we rewrite a part of the general theory of statistical mechanics for the case of a compact set Ω satisfying expansiveness and the specification property of Bowen [2]. Instead of a Z action we consider a Z' action as is usual in lattice statistical mechanics, where $\Omega = F^{Z'}$ (F: a finite set). This rewriting gives a more general and intrinsic formulation of (part of) statistical mechanics; it presents a number of technical problems, but the basic ideas are contained in the papers of Gallavotti, Lanford, Miracle, Robinson, and Ruelle [7], [11], [12], [13], etc. The ideas of Bowen [2] and Goodwyn [8] on the relation between topological and measure-theoretical entropy are also used.

We describe now some of our results in the case of a homeomorphism T of a metrizable compact set Ω satisfying expansiveness and specification (see §1).

Let $\Pi_a = \{x \in \Omega : T^a x = \{x\}\}$, and let $\mathcal{L}(\Omega)$ be the Banach space of real continuous functions on Ω . The *pressure* P is a continuous convex function on $\mathcal{L}(\Omega)$ defined by

$$P(\varphi) = \lim_{a \to \infty} \frac{1}{a} \log Z(\varphi, a), \qquad Z(\varphi, a) = \sum_{x \in \Pi_a} \exp \sum_{m=1}^a \varphi(T^m x)$$

(§2). Let I be the set of probability measures on Ω , invariant under T with the vague topology. The (measure theoretic) *entropy* s is an affine upper semicontinuous function on I defined in the usual way (§4). The following variational principle holds (§5)

Received by the editors June 20, 1972.

AMS (MOS) subject classifications (1970). Primary 28A65, 54H20; Secondary 58F99, 82A30.

Copyright © 1974, American Mathematical Society

$$(0.1) P(\varphi) = \max_{\mu \in I} [s(\mu) + \mu(\varphi)], s(\mu) = \inf_{\varphi \in \mathcal{L}(\Omega)} [P(\varphi) - \mu(\varphi)].$$

Those μ for which the maximum is reached in (0.1) form a nonempty set I_{φ} . I_{φ} is a Choquet simplex and consists of precisely those $\mu \in I$ such that

$$P(\varphi + \psi) - P(\varphi) \ge \mu(\psi)$$
, all $\psi \in \mathcal{L}(\Omega)$.

Let $\mu_{\Phi,a}$ be the measure on Ω which is carried by Π_a and gives $x \in \Pi_a$ the mass

$$\mu_{\varphi,a}(\{x\}) = Z(\varphi,a)^{-1} \exp \sum_{m=1}^{a} \varphi(T^m x).$$

Then, any limit point of $\mu_{\varphi,a}$ as $a \to \infty$ is in I_{φ} (§3). There is a residual subset D of $\mathcal{L}(\Omega)$ such that I_{φ} consists of one single point μ_{φ} if $\varphi \in D$. In that case $\lim_{a\to\infty}\mu_{\varphi,a}=\mu_{\varphi}$.

Miscellaneous properties of invariant states are reviewed in §6.

I am indebted to J. Robbin for acquainting me with Bowen's papers, starting the present work.

1. Notation and assumptions. We denote by |S| the cardinal of the set S. If $m = (m_1, \ldots, m_r) \in \mathbb{Z}^r$, $v \ge 1$, we let $||m|| = \sup_i |m_i|$. Given integers $a_1, \ldots, a_r > 0$, we define $\Lambda(a) = \{m \in \mathbb{Z}^r : 0 \le m_i < a_i\}$. If (Λ_α) is a directed family of finite subsets of \mathbb{Z}^r , $\Lambda_\alpha \uparrow \infty$ means $|\Lambda_\alpha| \to \infty$ and $|\Lambda_\alpha + F|/|\Lambda_\alpha| \to 1$ for every finite $F \subset \mathbb{Z}^r$. In particular $\Lambda(a) \uparrow \infty$ when $a \to \infty$ (i.e. when $a_1, \ldots, a_r \to \infty$).

Let Z' act by homeomorphisms on the compact set Ω . We suppose that Ω is metrizable with metric d. $\mathcal{L}(\Omega)$ is the space of real continuous functions on Ω with the sup norm. On the space $\mathcal{L}(\Omega)^*$ of real measures on Ω , we put the vague topology. We denote by δ_x the unit mass at x.

The following assumptions are made.(1)

1.1. Expansiveness. There exists $\delta^* > 0$ such that

$$(d(mx, my) \le \delta^* \text{ for all } m \in \mathbb{Z}^*) \Rightarrow (x = y).$$

1.2. Weak specification. Given $\delta > 0$ there exists $p(\delta) > 0$ such that for any families $(\Lambda_i)_{i \in \mathcal{D}}$, $(x_i)_{i \in \mathcal{D}}$ satisfying

(i) if
$$i \neq j$$
, the distance of Λ_i , Λ_j (as subsets of \mathbb{Z}^r , with the distance $\|\cdot\|$) is $> p(\delta)$,

there is $x \in X$ such that

$$d(m_i x, m_i x_i) < \delta$$
, all $i \in \mathcal{Q}$, all $m_i \in \Lambda_i$.

1.3. Strong specification. Let $\mathbf{Z}'(a)$ be the subgroup of \mathbf{Z}' with generators $(a_1, 0, \ldots, 0), \ldots, (0, \ldots, a_r)$, and let $\Pi_a = \{x \in \Omega : \mathbf{Z}'(a)x = \{x\}\}$. For any

⁽¹⁾ Cf. Bowen [2].

families $(\Lambda_i)_{i \in \mathcal{O}}$, $(x_i)_{i \in \mathcal{O}}$ satisfying

(ii)
$$\Lambda_i \subset \Lambda(a) \text{ for all } i \text{ and, if } i \neq j,$$
 the distance of $\Lambda_i + \mathbf{Z}'(a)$ and Λ_i is $> p(\delta)$,

there is $x \in \Pi_a$ such that

$$d(m_i x, m_i x_i) < \delta$$
, all $i \in \mathcal{Q}$, all $m_i \in \Lambda_i$.

It is easily seen that strong specification implies weak specification. If Ω is a basic set for an Axiom A diffeomorphism ($\nu = 1$), it is known that expansiveness [19] holds, and that (strong) specification [2] holds for some iterate of the diffeomorphism.

We note that expansiveness has the following easy consequence.

- 1.4. Proposition [9]. If $0 < \delta$ there exists $q(\delta)$ such that $(d(mx, my) \le \delta^*)$ if $|m| < q(\delta) \Rightarrow (d(x, y) < \delta)$.
 - 2. Partition functions and pressure.
- 2.1. **Definitions.** Let $\delta > 0$; $E \subset \Omega$ is (δ, Λ) -separated if $(x, y \in E, \text{ and } d(mx, my) < \delta \text{ for all } m \in \Lambda) \Rightarrow (x = y)$. Let $\varphi \in \mathcal{L}(\Omega)$. Given $\delta > 0$ and a finite $\Lambda \subset \mathbf{Z}'$, or given $a = (a_1, \ldots, a_r)$ we introduce the *partition functions*

(2.1)
$$Z(\varphi, \delta, \Lambda) = \max_{E} \sum_{x \in F} \exp \sum_{m \in \Lambda} \varphi(mx)$$

where the max is taken over all (δ, Λ) -separated sets, or

(2.2)
$$Z(\varphi, a) = \sum_{x \in \Pi_x} \exp \sum_{m \in \Lambda(a)} \varphi(mx).$$

We write

(2.3)
$$P(\varphi, \delta, \Lambda) = (1/|\Lambda|) \log Z(\varphi, \delta, \Lambda),$$

(2.4)
$$P(\varphi, a) = (1/|\Lambda(a)|) \log Z(\varphi, a).$$

2.2. Theorem. If $0 < \delta < \delta^*$, the following limits exist:

(2.5)
$$\lim_{\Lambda \uparrow \infty} P(\varphi, \delta, \Lambda) = P(\varphi),$$

(2.6)
$$\lim_{n \to \infty} P(\varphi, a) = P(\varphi),$$

and define a finite-valued convex function P on $\mathcal{L}(X)$. Furthermore

$$(2.7) |P(\varphi) - P(\psi)| \le ||\varphi - \psi||$$

and if $\tau_m \psi(x) = \psi(mx)$, $t \in \mathbb{R}$,

$$(2.8) P(\varphi + \tau_m \psi - \psi + t) = P(\varphi) + t.$$

P is called the pressure.

Let $\epsilon > 0$; we choose $\delta' > 0$ so small that $\delta + 2\delta' \leq \delta^*$ and

$$(2.9) (d(x,y) < \delta') \Rightarrow |\varphi(x) - \varphi(y)| < \epsilon;$$

then take $p(\delta')$ according to 1.2. Given a, write $b = (a_1 + p(\delta'), \ldots, a_r + p(\delta'))$. We consider the partition $(\Lambda(b) + r)_{r \in \mathbf{Z}^r(b)}$ of \mathbf{Z}' . For a finite $\Lambda \subset \mathbf{Z}'$, let $R = \{r: \Lambda(b) + r \subset \Lambda\}$. Using specification we obtain

$$Z(\varphi,\delta,\Lambda)$$

$$(2.10) \geq \left[Z(\varphi, \delta + 2\delta', \Lambda(a)) \exp(-|\Lambda(a)|\epsilon) \exp(-(|\Lambda(b)| - |\Lambda(a)|) \|\varphi\|)\right]^{|R|} \cdot \exp(-(|\Lambda| - |R| |\Lambda(b)|) \|\varphi\|).$$

Since Π_a is $(\delta^*, \Lambda(a))$ -separated by expansiveness, we have also

(2.11)
$$Z(\varphi, \delta^*, \Lambda(a)) \geq Z(\varphi, a).$$

If $\Lambda \uparrow \infty$ we have $|R| |\Lambda(b)|/|\Lambda| \to 1$, and therefore (2.10) and (2.11) yield

$$(2.12) \quad \liminf_{\Lambda \uparrow \infty} P(\varphi, \delta, \Lambda) \geq \frac{|\Lambda(a)|}{|\Lambda(b)|} \cdot [P(\varphi, a) - \epsilon] - \left(1 - \frac{|\Lambda(a)|}{|\Lambda(b)|}\right) \|\varphi\|.$$

Suppose now that $\delta' < \frac{1}{2}\delta$, and let N be the cardinal of a finite cover of Ω by sets of diameter $< \delta$. Let F be a $(\delta', \Lambda(b))$ separated set such that

$$Z(\varphi, \delta', \Lambda(b)) = \sum_{y \in F} \exp \sum_{m \in \Lambda(b)} \varphi(my).$$

Given $x \in E$ and $r \in R$ we choose $y \in F$ such that $d((r + m)x, my) < \delta'$, for all $m \in \Lambda(b)$. The mapping $(x, r) \to y$ defines an injection $E \to F^R$, and therefore

$$(2.13) \quad Z(\varphi, \delta, \Lambda) \leq [Z(\varphi, \delta', \Lambda(b)) \exp(|\Lambda(b)|\epsilon)]^{|R|} (N \exp ||\varphi||)^{|\Lambda| - |R||\Lambda(b)|}.$$

Taking $c = (b_1 + p(\delta'), \dots, b_p + p(\delta'))$, strong specification gives

$$(2.14) \quad Z(\varphi, \delta', \Lambda(b)) \exp(-|\Lambda(b)|\epsilon) \exp(-(|\Lambda(c)| - |\Lambda(b)|) \|\varphi\|) \leq Z(\varphi, c).$$

From (2.13) and (2.14) we obtain

$$(2.15) \qquad \limsup_{\Lambda\uparrow\infty} P(\varphi,\delta,\Lambda) \leq \frac{|\Lambda(c)|}{|\Lambda(b)|} P(\varphi,c) + 2\epsilon + \left(\frac{|\Lambda(c)|}{|\Lambda(b)|} - 1\right) \|\varphi\|.$$

Letting $a \to \infty$ in (2.12) and (2.15) we obtain (2.5) and (2.6).

The finiteness of $P(\varphi)$ follows from $\exp(-|\Lambda| \|\varphi\|) \le Z(\varphi, \delta, \Lambda) \le N^{|\Lambda|} \exp(|\Lambda| \|\varphi\|)$. The other properties follow from Lemma 2.3 below.

2.3. **Lemma.** $P(\varphi, \delta, \Lambda)$ is a convex function of φ . Furthermore $|P(\varphi, \delta, \Lambda) - P(\psi, \delta, \Lambda)| \le ||\varphi - \psi||$ and $P(\varphi + t, \delta, \Lambda) = P(\varphi, \delta, \Lambda) + t$, if $t \in \mathbb{R}$. Similar

properties hold for $P(\varphi, a)$, and also $P(\varphi + \tau_m \psi - \psi, a) = P(\varphi, a)$.

We have $P(\varphi, \delta, \Lambda) = \max_{E} p(\varphi)$ where

$$p(\varphi) = (1/|\Lambda|)\log Z(\varphi), \qquad Z(\varphi) = \sum_{x \in E} \exp \sum_{m \in \Lambda} \varphi(mx),$$

$$\frac{d}{dt}p(\varphi + t\psi) = \frac{1}{Z(\varphi + t\psi)} \sum_{x} \frac{1}{|\Lambda|} \left[\sum_{m'} \psi(m'x) \right] \exp \sum_{m} \left[\varphi(mx) + t\psi(mx) \right].$$

Therefore

$$\begin{split} |\Lambda| \frac{d^2}{dt^2} p(\varphi + t\psi)|_{t=0} \\ &= \frac{1}{Z^2} \sum_{x} \sum_{y} \frac{1}{2} \left[\sum_{m} \psi(mx) - \sum_{m} \psi(my) \right]^2 \exp \sum_{m} \left[\varphi(mx) + \varphi(my) \right] \ge 0. \end{split}$$

On the other hand $|dp(\varphi + t\psi)/dt| \leq ||\psi||$; hence

$$|p(\varphi)-p(\psi)|\leq \sup_{0\leq t\leq 1}\left|\frac{d}{dt}p(\varphi+t(\psi-\varphi))\right|\leq \|\psi-\varphi\|.$$

Finally $Z(\varphi + t) = e^{|\Lambda|t}Z(\varphi)$, $Z(\varphi + \tau_m \psi - \psi, a) = Z(\varphi, a)$.

2.4. Remark. Let Σ be the subgroup of \mathbf{Z}' with linearly independent generators s_1, \ldots, s_r , and define $\Lambda(\Sigma) = \{m \in \mathbf{Z}' : m = \sum_{i=1}^r t_i s_i \text{ with } t_i \text{ real, } 0 \le t_i < 1\}$. If a suitable extension of the strong specification property holds, one can prove

$$P(\varphi) = \lim_{\Lambda(\Sigma)\uparrow\infty} \frac{1}{|\Lambda(\Sigma)|} \log \sum_{x \in \Pi_{\Sigma}} \exp \sum_{m \in \Lambda(\Sigma)} \varphi(mx),$$

where $\Pi_{\Sigma} = \{x : \Sigma x = \{x\}\}.$

On the other hand, except for (2.6), Theorem 2.2 can be proved without the strong specification property (but assuming expansiveness and weak specification).

- 3. Equilibrium states.
- 3.1. **Definition.** Let $\mu_{\varphi,a}$ be the measure on Ω which is carried by Π_a and gives $x \in \Pi_a$ the mass

(3.1)
$$\mu_{\varphi,a}(\{x\}) = Z(\varphi,a)^{-1} \exp \sum_{m \in \Lambda(a)} \varphi(mx).$$

3.2. **Theorem.** (a) Let $I_{\infty} \subset \mathcal{L}(\Omega)^*$ be the set of measures μ such that

$$(3.2) P(\varphi + \psi) \ge P(\varphi) + \mu(\psi)$$

for all ψ (equilibrium states for φ). Then I_{φ} is nonempty and there is a residual (2) set $D \subset \mathcal{C}(\Omega)$ such that I_{φ} consists of a single point μ_{φ} if $\varphi \in D$.

⁽²⁾ I.e. D is a countable intersection of dense open subsets of $\mathcal{C}(\Omega)$; in particular D is dense in $\mathcal{C}(\Omega)$ by Baire's theorem.

- (b) I_{φ} is convex, (vaguely) compact, and consists of Z^{p} invariant probability measures.
 - (c) The probability measure $\mu_{\varphi,a}$ is **Z'** invariant, and

(d) If μ is a (vague) limit point of the $(\mu_{\varphi,a})$ when $a \to \infty$, then $\mu \in I_{\varphi}$. In particular, if $\varphi \in D$,

$$\lim_{a\to\infty}\mu_{\varphi,a}=\mu_{\varphi}.$$

- (e) If \mathcal{B} is dense in $\mathcal{C}(\Omega)$ and is a separable Banach space with respect to a norm $\| \| \cdot \| \| \ge \| \cdot \|$, then $D \cap \mathcal{B}$ is residual in \mathcal{B} .
- (a) holds for any convex continuous function P on a separable Banach space (see Dunford-Schwartz [6, Theorem V.9.8]). This proves also (e).

Let μ satisfy (3.2). Then by (2.8),

$$0 = P(\varphi + \tau_m \psi - \psi) - P(\varphi) \ge \mu(\tau_m \psi - \psi) \ge -[P(\varphi - \tau_m \psi + \psi) - P(\varphi)] = 0$$

so that μ is \mathbb{Z}' invariant. Using (2.7) and (2.8) we obtain also $\pm \mu(\psi) \leq P(\varphi \pm \psi) - P(\varphi) \leq \|\psi\|$ and $\mu(1) = -\mu(-1) \geq -[P(\varphi - 1) - P(\varphi)] = 1$. Therefore $\|\mu\| \leq 1$, $\mu(1) \geq 1$ which implies that $\mu \geq 0$, $\|\mu\| = 1$, i.e. μ is a probability measure. Clearly, I_{∞} is convex and compact, and (b) is thus proved.

(c) follows readily from the definitions. From (3.3) and the convexity of $P(\cdot, a)$ (Lemma 2.3), we obtain

$$P(\varphi + \psi, a) \geq P(\varphi, a) + \mu_{m,a}(\psi).$$

If $\mu_{\varphi,a} \to \mu$ this yields (3.2), proving (d).

- 4. Entropy.(3)
- 4.1. **Definitions.** Let $\mathcal{A} = (A_i)_{i \in \mathcal{I}}$ be a finite Borel partition of Ω , and Λ a finite subset of \mathbf{Z}' . We denote by \mathcal{A}^{Λ} the partition of Ω consisting of the sets $A(k) = \bigcap_{m \in \Lambda} (-m) A_{k(m)}$ indexed by maps $k \colon \Lambda \to \mathcal{I}$. We write

(4.1)
$$S(\mu, \mathcal{A}) = -\sum_{i} \mu(A_{i}) \log \mu(A_{i}).$$

Let I be the (convex compact) set of \mathbb{Z}^r -invariant probability measures on Ω .

4.2. Theorem. If \mathcal{A} consists of sets with diameter $\leq \delta^*$, and $\mu \in I$, then

(4.2)
$$\lim_{\Lambda\uparrow\infty}\frac{1}{|\Lambda|}S(\mu,\mathcal{A}^{\Lambda})=\inf_{\Lambda}\frac{1}{|\Lambda|}S(\mu,\mathcal{A}^{\Lambda})=s(\mu).$$

⁽³⁾ See also J.-P. Conze, Entropie d'un groupe abélien de transformations [Z. Wahrscheinlichkeitstheorie Verw. Gebiete 25 (1972), 11-30].

This limit is finite ≥ 0 , and independent of \mathcal{A} . Furthermore, s is affine upper semicontinuous on I; s is called the entropy.

 $S(\mu, \mathcal{A}^{\Lambda})$ is an increasing function of Λ , and satisfies the strong subadditivity property

$$(4.3) S(\mu, \mathcal{A}^{\Lambda_1 \cup \Lambda_2}) + S(\mu, \mathcal{A}^{\Lambda_1 \cap \Lambda_2}) \leq S(\mu, \mathcal{A}^{\Lambda_1}) + S(\mu, \mathcal{A}^{\Lambda_2}).$$

[These are well-known properties. The increase follows from increase of the logarithm. To prove strong subadditivity we write $S(\mu, \mathcal{A}^{\Lambda}) = S_{\Lambda}$, and use the inequality $-\log(1/t) \le t - 1$, then

$$\begin{split} S_{\Lambda_{1} \cup \Lambda_{2}} + S_{\Lambda_{1} \cap \Lambda_{2}} - S_{\Lambda_{1}} - S_{\Lambda_{2}} \\ &= -\sum_{k:\Lambda_{1} \cap \Lambda_{2} \to \sigma} \sum_{k':\Lambda_{1} \setminus \Lambda_{2} \to \sigma} \sum_{k'':\Lambda_{2} \setminus \Lambda_{1} \to \sigma} \mu(A(k, k', k'')) \log \frac{\mu(A(k, k', k''))\mu(A(k))}{\mu(A(k, k'))\mu(A(k, k''))} \\ &\leq \sum_{kk'k''} \mu(A(k, k', k'')) \left[\frac{\mu(A(k, k'))\mu(A(k, k''))}{\mu(A(k, k', k''))\mu(A(k))} - 1 \right] \\ &= \sum_{kk'} \frac{\mu(A(k, k'))}{\mu(A(k))} \sum_{k''} \mu(A(k, k'')) - \sum_{kk'k''} \mu(A(k, k', k'')) \\ &= \sum_{k'} \mu(A(k, k')) - 1 = 0. \end{split}$$

If $\Lambda_1 \cap \Lambda_2 = \emptyset$, (4.3) becomes subadditivity: $S(\mu, \mathcal{A}^{\Lambda_1 \cup \Lambda_2}) \leq S(\mu, \mathcal{A}^{\Lambda_1}) + S(\mu, \mathcal{A}^{\Lambda_2})$. Since $\mu \in I$ we have also $S(\mu, \mathcal{A}^{\Lambda}) = S(\mu, \mathcal{A}^{\Lambda+m})$ and therefore(4)

(4.4)
$$\lim_{a\to\infty}\frac{1}{|\Lambda(a)|}S(\mu,\mathcal{A}^{\Lambda(a)})=\inf_{a}\frac{1}{|\Lambda(a)|}S(\mu,\mathcal{A}^{\Lambda(a)})=s.$$

Given $\epsilon > 0$, choose a such that $|\Lambda(a)|^{-1}S(\mu, \mathcal{A}^{\Lambda(a)}) \leq s + \epsilon$. Consider the partition $(\Lambda(a) + r)_{r \in \mathbb{Z}'(a)}$ of \mathbb{Z}' , and let $R = \{r \in \mathbb{Z}'(a): (\Lambda(a) + r) \cap \Lambda \neq \emptyset\}$. If $\Lambda_+ = \bigcup_{r \in \mathbb{R}} (\Lambda(a) + r)$ we have by increase and subadditivity

$$S(\mu, \mathcal{A}^{\Lambda}) \leq S(\mu, \mathcal{A}^{\Lambda_+}) \leq |R|S(\mu, \mathcal{A}^{\Lambda(a)}) \leq |R||\Lambda(a)|(s+\epsilon).$$

But $|R| |\Lambda(a)|/|\Lambda| \to 1$ when $\Lambda \uparrow \infty$, and therefore

(4.5)
$$\limsup_{\Lambda \uparrow \infty} |\Lambda|^{-1} S(\mu, \mathcal{A}^{\Lambda}) \leq s + \epsilon.$$

Strong subadditivity shows that

$$(4.6) S(\mu, \mathcal{A}^{\Lambda \cup \{m\}}) - S(\mu, \mathcal{A}^{\Lambda}) \ge S(\mu, \mathcal{A}^{\Lambda' \cup \{m\}}) - S(\mu, \mathcal{A}^{\Lambda'})$$

when $m \notin \Lambda' \supset \Lambda$. This permits an estimate of the increase in the entropy for a set Λ to which points are added successively in lexicographic order. In

⁽⁴⁾ See for instance [14, Proposition 7.2.4].

particular if Λ is fixed and one takes for Λ' the sets successively obtained in the lexicographic construction of a large $\Lambda(a)$, (4.6) holds for most Λ' . Therefore

$$S(\mu, \mathcal{A}^{\Lambda \cup \{m\}}) - S(\mu, \mathcal{A}^{\Lambda}) \ge \lim_{a \to \infty} |\Lambda(a)|^{-1} S(\mu, \mathcal{A}^{\Lambda(a)}) = s$$

and hence

$$(4.7) S(\mu, \mathcal{A}^{\Lambda}) \geq |\Lambda| s$$

for all Λ ; (4.2) follows from (4.5) and (4.7).

Let $x \in \Omega$ and for each $m \in \Lambda$, let B_m be the union of those A_i which contain x in their closure. Then $B_{\Lambda} = \bigcap_{m \in \Lambda} (-m) B_m$ contains x in its interior and is a union of elements of \mathcal{A}^{Λ} . If $y \in B_{\Lambda}$ and $\Lambda = \{m: |m| < q(\delta)\}$, then $d(x,y) < \delta$ (see (1.4)). Therefore the σ -field generated by the \mathcal{A}^{Λ} is the Borel σ -field. The Kolmogorov-Sinai theorem (see [20, 5.5]) holds for the group \mathbb{Z}^r and implies that the limit (4.2) is independent of \mathcal{A} (it is clearly finite ≥ 0).

If μ , $\mu' \in I$, and $0 < \alpha < 1$, the following inequalities are standard:

(4.8)
$$\alpha S(\mu, \mathcal{A}) + (1 - \alpha)S(\mu', \mathcal{A}) \leq S(\alpha \mu + (1 - \alpha)\mu', \mathcal{A}) \leq \alpha S(\mu, \mathcal{A}) + (1 - \alpha)S(\mu', \mathcal{A}) + \log 2.$$

[Writing $\mu_i = \mu(A_i)$, $\mu'_i = \mu(A'_i)$ we have indeed, using the convexity of $t \log t$ and the increase of $\log t$,

$$\begin{split} & - \sum_{i} \left[\alpha \mu_{i} \log \mu_{i} + (1 - \alpha) \mu'_{i} \log \mu'_{i} \right] \\ & \leq - \sum_{i} \left[\alpha \mu_{i} + (1 - \alpha) \mu'_{i} \right] \log \left[\alpha \mu_{i} + (1 - \alpha) \mu'_{i} \right] \\ & \leq - \sum_{i} \left[\alpha \mu_{i} \log \alpha \mu_{i} + (1 - \alpha) \mu'_{i} \log (1 - \alpha) \mu'_{i} \right] \\ & = - \sum_{i} \left[\alpha \mu_{i} \log \mu_{i} + (1 - \alpha) \mu'_{i} \log \mu'_{i} \right] - \alpha \log \alpha - (1 - \alpha) \log (1 - \alpha) \\ & \leq - \sum_{i} \left[\alpha \mu_{i} \log \mu_{i} + (1 - \alpha) \mu'_{i} \log \mu'_{i} \right] + \log 2. \end{split}$$

(4.8) implies that s is affine.

To prove that s is upper semicontinuous at μ , choose \mathcal{A} such that the boundaries of the A_i have μ -measure zero. [If $x \in \Omega$ one can choose $\delta \leq \frac{1}{2}\delta^*$ such that the boundary of the sphere of radius δ centered at x has μ -measure 0. Take a finite covering of Ω by such spheres and let \mathcal{A} be generated by this covering.] The boundaries of the $A(k) \in \mathcal{A}^{\Lambda}$ have also measure 0, hence

$$\lim_{\mu\to\mu}\mu'(A(k))=\mu(A(k)),\qquad \lim_{\mu\to\mu}S(\mu',\mathcal{A}^{\Lambda})=S(\mu,\mathcal{A}^{\Lambda}),$$

and s is upper semicontinuous as inf of continuous functions.

4.3. Remarks. (a) Theorem 4.2 reduces to the usual definition of the measure theoretic entropy for $\nu=1$.

- (b) The condition that the diameters of the A_i are $\leq \delta^*$ can be replaced by the weaker condition that the \mathcal{A}^{Λ} generate the Borel σ -field (see the proof).
- (c) The proof of Theorem 4.2 assumes expansiveness, but specification is not used.
 - 5. Variational principle.
 - 5.1. **Theorem.** For all $\varphi \in \mathcal{C}(\Omega)$,

(5.1)
$$P(\varphi) = \max_{\mu \in I} [s(\mu) + \mu(\varphi)]$$

and the maximum is reached precisely on I_m . For all $\mu \in I$,

$$s(\mu) = \inf_{\infty} [P(\varphi) - \mu(\varphi)].$$

Let $\varphi \in \mathcal{L}(\Omega)$ and $\mu \in I$ be given. Since Ω is metrizable compact, there exists a finite set $\{\psi_1, \ldots, \psi_l\}$ of elements of $\mathcal{L}(\Omega)$ such that if $|\psi_l(x) - \psi_l(y)| < 1$ for $l = 1, \ldots, t$, then $d(x, y) < \delta^*$. Given $\epsilon > 0$ and a we construct a partition $\mathcal{B} = (B_i)_{i \in \mathcal{I}}$ consisting of sets of the form $B_i = \{x : u_{ilm} \leq \psi_l(mx) < v_{ilm} \text{ and } u'_{im} \leq \varphi(mx) < v'_{im} \text{ for all } i, l, \text{ and } m \in \Lambda(a)\}$. By suitable choice of the u_{ilm} , v_{ilm} , v'_{im} we can achieve that

- (a) the diameter of each set $(-m)B_i$, for $m \in \Lambda(a)$, is $\leq \delta^*$;
- (b) if B_i , B_i are adjacent (i.e. $\overline{B}_i \cap \overline{B}_i \neq \emptyset$) and $x \in B_i$, $y \in B_i$, then

$$|\varphi(mx) - \varphi(my)| < \epsilon/2 \text{ for all } m \in \Lambda(a);$$

(c) each $x \in X$ is contained in the closure of at most $(t+1)|\Lambda(a)| + 1$ sets B_{i} . (5)

Because of (c) there exists δ , $0 < \delta < \delta^*$, such that for each x there are at most $(t+1)|\Lambda(a)|+1$ sets B_i with distance $< \delta$ to x, and these sets are all adjacent to that containing x.

Let R be a subset of Z'(a), then

(5.3)
$$\inf_{R} \frac{1}{|R|} S(\mu, \mathcal{B}^R) = |\Lambda(a)| s(\mu).$$

To see this notice that the \mathcal{B}^R generate the Borel σ -field (by (a) above), and apply Remark 4.3(b) with \mathbf{Z}^r replaced by $\mathbf{Z}^r(a)$. It follows that the left-hand side of (5.3) is not changed if \mathcal{B} is replaced by $\mathcal{A}^{\Lambda(a)}$, and (5.3) follows. If E is a maximal (δ , R)-separated set, for each $k: R \to \mathcal{D}$ such that $B(k) \neq \emptyset$, one can choose $x \in B(k)$ and then $x_k \in E$ such that $d(rx_k, rx) < \delta$, all $r \in R$. By the choice of δ , rx_k is in a set B_i adjacent to $B_{k(r)}$. Therefore, by (b),

$$\left|\sum_{m\in\Lambda(a)}\varphi((r+m)x_k)-\sum_{m\in\Lambda(a)}\varphi(my)\right|<|\Lambda(a)|\epsilon/2$$

⁽⁵⁾ The B_i may be viewed as $(t+1)|\Lambda(a)|$ -dimensional rectangles and they can be adjusted so that at most $(t+1)|\Lambda(a)|+1$ meet at a corner. This idea is used by Goodwyn [8].

for all $y \in B_{k(i)}$. Choose $y_i \in B_i$ for each $i \in \mathcal{O}$, then

$$\frac{1}{|R|} \sum_{k:R \to \sigma} \mu(B(k)) \sum_{r \in R} \sum_{m \in \Lambda(a)} \varphi((r+m)x_k)$$

$$\geq \frac{1}{|R|} \sum_{r \in R} \sum_{i \in \sigma} \sum_{k:k(r)=i} \mu(B(k)) \left[\sum_{m \in \Lambda(a)} \varphi(my_i) - |\Lambda(a)|\epsilon/2 \right]$$

$$= \frac{1}{|R|} \sum_{r \in R} \sum_{i \in \sigma} \mu(B_i) \sum_{m \in \Lambda(a)} \varphi(my_i) - |\Lambda(a)|\epsilon/2$$

$$= \sum_{i \in \sigma} \mu(B_i) \sum_{m \in \Lambda(a)} \varphi(my_i) - |\Lambda(a)|\epsilon/2$$

$$\geq |\Lambda(a)| (\mu(\varphi) - \epsilon).$$

Notice that each $x_k \in E$ comes from at most $[(t+1)|\Lambda(a)|+1]^{|R|}$ different k's. Using this, and also (5.3), (5.4) and the concavity of the log, we obtain

$$\begin{split} |\Lambda(a)|(s(\mu) + \mu(\varphi) - \epsilon) \\ &\leq \frac{1}{|R|} \sum_{k} \mu(B(k)) \left[-\log \mu(B(k)) + \sum_{r \in R} \sum_{m \in \Lambda(a)} \varphi((r+m)x_k) \right] \\ &= \frac{1}{|R|} \sum_{k} \mu(B(k)) \log \left(\exp \left(\sum_{r} \sum_{m} \varphi((r+m)x_k) \right) / \mu(B(k)) \right) \\ &\leq \frac{1}{|R|} \log \sum_{k} \exp \sum_{r} \sum_{m} \varphi((r+m)x_k) \\ &\leq \frac{1}{|R|} \log [(t+1)|\Lambda(a)| + 1]^{|R|} \sum_{x \in F} \exp \sum_{x} \sum_{m} \varphi((r+m)x). \end{split}$$

If $\Lambda = \bigcup_{r \in R} (\Lambda(a) + r)$ then E is (δ, Λ) -separated; therefore

$$\frac{1}{|R|}\log \sum_{x\in E} \exp \sum_{r} \sum_{m} \varphi((r+m)x) \leq |\Lambda(a)| P(\varphi,\delta,\Lambda).$$

so that

$$s(\mu) + \mu(\varphi) - \epsilon \le P(\varphi, \delta, \Lambda) + (1/|\Lambda(a)|)\log[(t+1)|\Lambda(a)| + 1].$$

By taking $|\Lambda(a)|$ large then letting $\Lambda \uparrow \infty$, this yields

$$(5.5) s(\mu) + \mu(\varphi) \leq P(\varphi).$$

We show now that equality holds in (5.5) for some μ . Let $\langle u \rangle = (2^u, \dots, 2^u)$ and let μ be a limit of the sequence $\mu_{\varphi,\langle u \rangle}$. Choose now a partition of \mathcal{A} consisting of sets with diameter $\langle \delta^*$, and with boundaries of μ -measure 0. Given $\epsilon > 0$, there exists u such that $s(\mu) + \epsilon/2 > (1/|\Lambda(\langle u \rangle)|)S(\mu, \mathcal{A}^{\Lambda(\langle u \rangle)})$ and since $\mu_{\varphi,\langle v \rangle}(A(k)) \to \mu(A(k))$ when $v \to \infty$, one can choose $V \ge u$ such that if $v \ge V$,

$$\begin{split} s(\mu) + \epsilon &> (1/|\Lambda(\langle u \rangle)|) S(\mu_{\varphi,\langle v \rangle}, \mathcal{A}^{\Lambda(\langle u \rangle)}) \\ &\geq (1/|\Lambda(\langle v \rangle)|) S(\mu_{\varphi,\langle v \rangle}, \mathcal{A}^{\Lambda(\langle v \rangle)}) \\ &\geq (1/|\Lambda(\langle v \rangle)|) \sum_{x \in \Pi_{\langle v \rangle}} \mu_{\varphi,\langle v \rangle}(\{x\}) \log \mu_{\varphi,\langle v \rangle}(\{x\}) \end{split}$$

where we have used the subadditivity of $\Lambda \to S(\mu, \mathcal{A}^{\Lambda})$, and then expansiveness. Using the definition of $\mu_{\omega,\langle\nu\rangle}$ we obtain

$$s(\mu) + \epsilon > -\frac{1}{|\Lambda(\langle \nu \rangle)|} \sum_{x \in \Pi_{\langle \nu \rangle}} \mu_{\varphi,\langle \nu \rangle}(\{x\}) \left[\sum_{m \in \Lambda(\langle \nu \rangle)} \varphi(mx) - \log Z(\varphi,\langle \nu \rangle) \right]$$
$$= -\mu_{\varphi,\langle \nu \rangle}(\varphi) + (1/|\Lambda(\langle \nu \rangle)|) \log Z(\varphi,\langle \nu \rangle)$$

and the desired result follows by letting $\mu_{v_0,\langle v \rangle} \to \mu$. We have thus proved (5.1).

Let $J_{\varphi} = \{ \mu \in I : s(\mu) + \mu(\varphi) = P(\varphi) \}; J_{\varphi}$ is the set where the affine upper semicontinuous function $\mu \to s(\mu) + \mu(\varphi)$ reaches its maximum; hence J_{φ} is convex and compact. If $\mu \in J_{\varphi}$, we have

$$P(\varphi + \psi) \ge s(\mu) + \mu(\varphi + \psi) = s(\mu) + \mu(\varphi) + \mu(\psi)$$
$$= P(\varphi) + \mu(\psi);$$

hence $\mu \in I_{\varphi}$. Therefore $J_{\varphi} \subset I_{\varphi}$. If J_{φ} were different from I_{φ} one could find $\psi \in \mathcal{L}(\Omega)$ such that

(5.6)
$$\sup_{\mu \in \mathcal{L}_0} \mu(\psi) > \sup_{\mu \in \mathcal{L}_0} \mu(\psi).$$

Let $\mu_n \in J_{\varphi+\psi/n}$ and $\mu \in I_{\varphi}$, we have

$$\mu(\psi) = n\mu(\psi/n) \le n[P(\varphi + \psi/n) - P(\varphi)]$$

$$\le n[P(\varphi + \psi/n) - s(\mu_n) - \mu_n(\varphi)]$$

$$= n[\mu_n(\varphi + \psi/n) - \mu_n(\varphi)] = \mu_n(\psi).$$

If μ^* is a limit point of the sequence (μ_n) , then $\mu^* \in J_{\varphi}$ (by upper semicontinuity of s), and therefore $\mu(\psi) \leq \mu^*(\psi)$ for all $\mu \in I_{\varphi}$, in contradiction with (5.6). We have thus shown that $J_{\varphi} = I_{\varphi}$.

We want now to prove (5.2). We already know by (5.5) that $s(\mu) \leq P(\varphi) - \mu(\varphi)$ and it remains to show that by proper choice of φ the right-hand side becomes as close as desired to $s(\mu)$. Let $C = \{(\mu, t) \in \mathcal{L}(\Omega)^* \times \mathbb{R}: \mu \in I \text{ and } 0 \leq t \leq s(\mu)\}$. Since s is affine upper semicontinuous, C is convex and compact. Given $\mu^* \in I$ and $u > s(\mu^*)$ there exist (because C is convex and compact) $\varphi \in \mathcal{L}(\Omega)$ and $c \in \mathbb{R}$ such that

$$-\mu^*(\varphi) + c = u$$
, $-\mu(\varphi) + c > s(\mu)$, for all $\mu \in I$;

hence
$$-\mu(\varphi) + u + \mu^*(\varphi) > s(\mu)$$
 and we have, if $\mu \in I_{\varphi}$,

$$0 \le P(\varphi) - s(\mu^*) - \mu^*(\varphi)$$

$$= s(\mu) + \mu(\varphi) - s(\mu^*) - \mu^*(\varphi)$$

$$< u - s(\mu^*).$$

The right-hand side is arbitrarily small and (5.2) follows.

- 5.2. Remark. If Ω is a basic set for an Axiom A diffeomorphism it is known [3] that $0 \in D$, i.e., the maximum of $s(\mu)$ is reached for just one $\mu \in I$. Further results on D have been obtained for Anosov diffeomorphisms using methods of statistical mechanics [18].
- 6. The sets of invariant states. In this section we study the set I of all Z'-invariant probability measures and its relations with the I_{∞} .
- 6.1. **Proposition.** For each $\varphi \in \mathcal{C}(\Omega)$, I_{φ} is a Choquet simplex, and a face (see [4]) of the simplex I.

It is well known that the set I of invariant probability measures is a simplex.(6) If $\mu \in I_{\varphi}$, let m_{μ} be the unique probability measure on I, carried by the extremal points of I, and with resultant μ . Writing $\hat{\varphi}(\nu) = \nu(\varphi)$, we have (see [4])

$$m_{\mu}(s+\hat{\varphi})=s(\mu)+\mu(\varphi)=P(\varphi);$$

hence the support of m_{μ} is contained in $\{\nu \in I: s(\nu) + \nu(\varphi) = P(\varphi)\} = I_{\varphi}$. This shows that I_{φ} is a simplex and a face of I.

6.2. Proposition. Suppose that \mathcal{B} is dense in $\mathcal{C}(\Omega)$ and is a separable Banach space with respect to a norm $||\cdot||| \geq ||\cdot||$. If $\varphi \in \mathcal{B}$, then I_{φ} is the closed convex hull of the set of μ such that

$$\mu = \lim_{n \to \infty} \mu_{\varphi(n)}, \qquad \lim_{n \to \infty} |||\varphi(n) - \varphi||| = 0, \qquad \varphi(n) \in D \cap \mathcal{B},$$

where D is defined in Theorem 3.2(a). This applies in particular with $\mathcal{B} = \mathcal{C}(\Omega)$.

We have $P(\varphi(n) + \psi) \ge P(\varphi(n)) + \mu_{\varphi(n)}(\psi)$ for all ψ , hence $P(\varphi + \psi) \ge P(\varphi) + \mu(\psi)$ so that $\mu \in I_{\varphi}$ if μ is of the above form.

Suppose now that I_{φ} were not in the closed convex hull of those μ . There would then exist $\psi \in \mathcal{B}$ such that

(6.1)
$$\sup_{\nu \in L} \nu(\nu) > \sup_{\mu} \mu(\nu).$$

Let $\varphi(n) = \varphi + \psi/n + \chi_n \in D \cap \mathcal{B}$; then, by convexity of P, if $\nu \in I_{\varphi}$,

$$\nu(\psi/n+\chi_n)\leq \mu_{m(n)}(\psi/n+\chi_n).$$

⁽⁶⁾ See for instance Jacobs [10, p. 162].

Using Theorem 3.2(e) we may take $|||\chi_n||| < 1/n^2$; we have thus

$$\nu(\psi) - 1/n \le \mu_{\omega(n)}(\psi) + 1/n$$

and if μ^* is a limit point of $(\mu_{\varphi(n)})$, $\nu(\psi) \leq \mu^*(\psi)$ in contradiction with (6.1).

6.3. Proposition. The set of measures μ on Ω such that

$$\mu(\varphi) \leq P(\varphi) \quad \text{for all } \varphi \in \mathcal{L}(\Omega)$$

is I.

If $\mu \in I$ we have $\mu(\varphi) \le P(\varphi) - s(\mu) \le P(\varphi)$ because $s \ge 0$. Let now (6.2) hold for some $\mu \in \mathcal{C}(\Omega)^*$. By (2.8) we have

$$\mu(\varphi) - \mu(\tau_m \varphi) = t^{-1} \mu(t\varphi - t\tau_m \varphi) \le t^{-1} P(t\varphi - t\tau_m \varphi) = t^{-1} P(0).$$

Letting $t \to \infty$ gives $\mu(\varphi) - \mu(\tau_m \varphi) \le 0$. Replacing φ by $-\varphi$ yields $\mu(\varphi) = \mu(\tau_m \varphi)$. Therefore μ is \mathbb{Z}^r invariant. Using now (2.7) and (2.8) we find

$$\pm \mu(\varphi) = \lim_{t \to \pm \infty} \frac{1}{|t|} \mu(t\varphi) \le \lim_{t \to \pm \infty} \frac{1}{|t|} P(t\varphi)$$
$$\le \lim_{t \to \pm \infty} \frac{1}{|t|} [P(0) + ||t\varphi||] = ||\varphi||$$

so that $\|\mu\| \le 1$. Furthermore (2.8) shows that, for all t, $t\mu(1) = \mu(t) \le P(0) + t$, so that $\mu(1) = 1$. Since $\|\mu\| = 1$ and $\mu(1) = 1$, μ is a probability measure.

6.4. **Proposition.**(7) The set

$$\mathcal{M}_p = \bigcup_a \left\{ \frac{1}{|\Lambda(a)|} \sum_{m \in \Lambda(a)} \delta_{mx} \colon x \in \Pi_a \right\}$$

is dense in I.

A vague neighbourhood of $\mu \in I$ is given by $\{\nu \in I: \|\nu - \mu\|_{\varphi_i} < \epsilon \text{ for } i = 1, \ldots, n\}$ where $\|\nu - \mu\|_{\varphi_i} = |\nu(\varphi_i) - \mu(\varphi_i)|$ and $\varphi_1, \ldots, \varphi_n \in \mathcal{C}(\Omega), \epsilon > 0$. We assume without loss of generality that $\|\varphi_i\| \le 1$ for $i = 1, \ldots, n$.

Given $\epsilon > 0$, we choose $\delta > 0$ such that $d(x,y) < \delta$ implies $|\varphi_i(x) - \varphi_i(y)| < \epsilon$ for i = 1, ..., n.

Let $p(\delta)$ be given by 1.2, $N > p(\delta)/\epsilon$ and a = (N, ..., N), $b = (N + p(\delta), ..., N + p(\delta))$. By the density of measures with finite support we can choose $c_{\alpha} > 0$, $x_{\alpha} \in \Omega$ such that

$$\sum_{\alpha} c_{\alpha} = 1, \qquad \left\| \sum_{\alpha} c_{\alpha} \delta_{x_{\alpha}} - \mu \right\|_{\tau_{\alpha} \cdot \sigma_{\alpha}} < \epsilon,$$

⁽⁷⁾ Sigmund [15] has proved this result by a somewhat different method for $\nu = 1$.

for i = 1, ..., n, and $m \in \Lambda(b)$. We have thus

$$\left\|\sum_{\alpha} c_{\alpha} \delta_{mx_{\alpha}} - \mu\right\|_{a_{\alpha}} < \epsilon \quad \text{for } m \in \Lambda(b);$$

hence

(6.3)
$$\left\| \frac{1}{|\Lambda(b)|} \sum_{m \in \Lambda(b)} \sum_{\alpha} c_{\alpha} \delta_{mx_{\alpha}} - \mu \right\|_{\infty} < \epsilon.$$

By 1.3, we can choose $y_{\alpha} \in \Pi_b$ such that $|\varphi_i(mx_{\alpha}) - \varphi_i(my_{\alpha})| < \epsilon$ for $m \in \Lambda(a)$, and we have $|\varphi_i(mx_{\alpha}) - \varphi_i(my_{\alpha})| \le 2$ for $m \in \Lambda(b) \setminus \Lambda(a)$; hence

(6.4)
$$\left\| \sum_{m \in \Lambda(b)} \sum_{\alpha} \frac{c_{\alpha}}{|\Lambda(b)|} \delta_{my_{\alpha}} - \sum_{m \in \Lambda(b)} \sum_{\alpha} \frac{c_{\alpha}}{|\Lambda(b)|} \delta_{mx_{\alpha}} \right\|_{\varphi_{i}} < \epsilon \frac{|\Lambda(a)|}{|\Lambda(b)|} + 2 \frac{|\Lambda(b)| - |\Lambda(a)|}{|\Lambda(b)|} < \epsilon + 2(1 + \epsilon)^{\mathfrak{p}} - 2.$$

We can now find integers P, $M_{\alpha} > 0$ such that $\sum_{\alpha} M_{\alpha} = P'$ and

(6.5)
$$\left\| \sum_{\alpha} \frac{M_{\alpha}}{|\Lambda(b)| P^{p}} \sum_{m \in \Lambda(b)} \delta_{my_{\alpha}} - \sum_{m \in \Lambda(b)} \sum_{\alpha} \frac{c_{\alpha}}{|\Lambda(b)|} \delta_{my_{\alpha}} \right\|_{q_{\alpha}} < \epsilon.$$

Let $c = ((N + p(\delta))P, ..., (N + p(\delta))P)$. By application of (1.3), there exists $y \in \Pi_c$ such that when \tilde{m} varies over $\Lambda(c)$, my takes M_α times a value close to my_α for each α and each $m \in \Lambda(a)$. Close means $d(\tilde{m}y, my_\alpha) < \delta$. Then

(6.6)
$$\left\| \frac{1}{|\Lambda(c)|} \sum_{\tilde{m} \in \Lambda(c)} \delta_{\tilde{m}y} - \frac{1}{|\Lambda(b)|} \sum_{\alpha} M_{\alpha} \sum_{m \in \Lambda(b)} \delta_{my_{\alpha}} \right\|_{\varphi_{l}} \\ \leq \epsilon \frac{|\Lambda(a)|}{|\Lambda(b)|} + 2 \frac{|\Lambda(b)| - |\Lambda(a)|}{|\Lambda(b)|} < \epsilon + 2(1 + \epsilon)^{r} - 2.$$

Finally, (6.3), (6.4), (6.5), (6.6) give

$$\left\|\frac{1}{|\Lambda(c)|}\sum_{\tilde{m}\in\Lambda(c)}\delta_{\tilde{m}y}-\mu\right\|_{\varphi_{\varepsilon}}<4\epsilon+4(1+\epsilon)^{r}-4,$$

proving the proposition.

- 6.5. Proposition.(8) (a) The set of ergodic measures (extremal points of I) is residual in I.
 - (b) The set of measures with zero entropy is residual in I.

Since \mathcal{M}_p is dense (Proposition 6.4) and consists of ergodic measures with zero entropy, it suffices to show that the set of ergodic measures and the set of measures with zero entropy are G_δ (i.e. countable intersections of open sets). For ergodic measures this is well known (see [4]); for measures with zero entropy, it follows from the fact that the entropy is upper semicontinuous.

⁽⁸⁾ See Sigmund [15] where other residual sets are also discussed.

Added in proof. A proof of the variational principle (0, 1) has been obtained without the expansiveness and specification assumptions by P. Walters (preprint).

REFERENCES

- 1. R. L. Adler, A. G. Konheim and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291.
- 2. R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397. MR 43 #8084.
- 3.—, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 43 #2740.
- 4. G. Choquet and P. A. Meyer, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 1, 139–154. MR 26 #6748; MR 30 #1203.
- 5. E. I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19-22 = Soviet Math. Dokl. 11 (1970), 13-16. MR 41 #425.
- 6. N. Dunford and J. T. Schwartz, *Linear operators*. I. General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 7. G. Gallavotti and S. Miracle-Sole, Statistical mechanics of lattice systems, Comm. Math. Phys. 5 (1967), 317-323. MR 36 #1173.
- 8. L. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688. MR 40 #299.
- 9. W. H. Gottschalk and G. A. Hedlund, *Topological dynamics*, Amer. Math. Soc. Colloq. Publ., vol 36, Amer. Math. Soc., Providence, R.I., 1955. MR 17, 650.
- K. Jacobs, Lecture notes on ergodic theory. I, II, Mat. Inst., Aarhus Univ., Aarhus, 1963, pp. 1-207, 208-505. MR 28 #1247; #3138.
- 11. O. E. Lanford and D. W. Robinson, Statistical mechanics of quantum spin systems. III, Comm. Math. Phys. 9 (1968), 327-338. MR 38 #3012.
- 12. D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Comm. Math. Phys. 5 (1967), 288-300. MR 37 #1146.
- 13. D. Ruelle, A variational formulation of equilibrium statistical mechanics and the Gibbs phase rule, Comm. Math. Phys. 5 (1967), 324-329. MR 36 #699.
 - 14.—, Statistical mechanics. Rigorous results, Benjamin, New York, 1969. MR 44 #6279.
- 15. K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math. 11 (1970), 99-109. MR 44 #3349.
- 16. Ja. G. Sinaĭ, Markov partitions and Y-diffeomorphisms, Funkcional Anal. i Priložen. 2 (1968), no.1, 64-89 = Functional Anal. Appl. 2 (1968), 61-82. MR 38 #1361.
- 17.——, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70-80. (Russian) MR 40 #3591.
- 18.——, Invariant measures for Anosov's dynamical systems, Proc. Internat. Congress Math. (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, pp. 929–940.
- 19. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
- 20. M. Smorodinsky, Ergodic theory, entropy, Lecture Notes in Math., vol. 214, Springer-Verlag, Berlin, 1971.

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, BURES-SUR-YVETTE, FRANCE